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First Characterization of a 10-P-5 Spirophosphorane
with an Apical Carbon—Equatorial Oxygen Ring.
Kinetic Studies on Pseudorotation of Stereocisomers
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Hiroshima Unversity, 1-3-1 Kagamiyama
Higashi-Hiroshima 739, Japan  Figure 1. The ORTEP drawings o8 and 4 showing the thermal
ellipsoids at the 30% probability level. All hydrogens have been omitted
Receied June 25, 1996  for clarity. Selected bond distances (A) and angles (d&gp1-01,
Revised Manuscript Receed October 29, 1996  1.765(2); P02, 1.753(2); P£C1, 1.818(2); P£C10, 1.820(2); P%
C19, 1.818(2); 0+P1-02, 175.79(6); O+P1-C1, 87.32(8); O2
10-P-5 phosphoranes usually assume trigonal bipyramidal P1-C10, 87.30(8); C+P1-C10, 126.84(8), C16P1-C19, 116.6(1);
structures in the ground state, in which there are two distinctive C1-P1-C19, 116.6(1)4 P1-01, 1.768(3); P+02, 1.659(2); P+
sites, the apical and the equatorial positiéni.is well-known C1, 1.813(4); P+C10, 1.863(4); P+C19, 1.835(5); O+P1-C10,
that a phosphorane bearing oxygen and carbon substituentg 70-6(1); O¥P1-C1, 87.1(2); O2P1-C10, 87.8(1); 02P1-C1,
preferentially has oxygen atoms in the apical positions as the 119.9(2), 02 P1-C19, 124.0(2); C+P1-C19, 114.8(2).
most stable stereoisomer according to the apicophilicity of the gcheme 1
elements:® Quite recently, it was reported that a specially R ‘
designed tetraoxyphosphorane in which a carbon substituent ’ 0 ’ FC. ek, X
occupies the apical position due to steric hindrance could be L ; 1) BuLi (>2 eq) W b . /\\g|
|
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isolated as the only detectable isorfieHere, we report on the - F"Ci (',}'» ® S
oo . o : ; ’ [\ 0
first isolation and characterization of a spirophosphorane having A \

an apical carbonequatorial oxygen five-membered ring and FCCFy FCT YCFs
its thermodynamically more stable apical oxyg@&guatorial 1 2 3
carbon isomer and discuss the relative thermal stability of these 90 % 9%
stereoisomers on the basis of kinetic studies. Scheme 2

When P-H (equatorial) spirophosphorang [31P NMR . —

F5C

(CDCly) 6 —45.8 (Jpyy = 729 Hz)PS was treated with more e o acr, oo &

than 2 equiv oh-BulLi in ether and carefully treated with dilute (2equiv) @ T/b . - l|>—B . AN DI)_B“ .

hydrochloric acid, we obtained monocyclic—P (apical) THE | pcad 2.°PQ om T @ | :
7 . - 31 o 60°C,20min | > =707 | VBu FyCivy o

phosphoran@’ [90%; mp 119°C; 3P NMR (CDCB) 6 —34.4 rC | n Pl
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(9, “Jrr = 9.2 Hz, 3F),—76.8 (q,%Jer = 8.2 Hz, 3F),—77.0 TS b 3.

(99, “Jrr = 9.2 Hz,%Je = 4.9 Hz, 3F)] and spirophosphorane

3 bearing a butyl group [9%; mp 10€; 31P NMR (CDC}) ¢ 9 . .
—18.8:19F NMR (CDCh) 6 —75.1 (q,4Jr = 9.3 Hz, 6F)~75.4 4° revealed that these compounds were stereoisomers with

41 — trigonal bipyramidal structure, as shown in Figure 1. ltis clearly
@. “Jpr = 9.3 HZ{ 6F)] (Scheme 1)j shown that the apical bonds dfare longer than the corre-
Thermal reactions o in refluxing toluene affordeds, sponding equatorial bonds (i.e., PO1(ap) 1.768> P1-02-

quantitatively (Scheme 2). However, wh2mas treated with  (eq) 1.659 A and P2C10(ap) 1.863> P1-C1l(eq) 1.813 A.
2 equiv of pyridine in tetrahydrofuran at 6C for 20 min, a  On the other hand, the pairs of bonds3fre almost equal
new species4) [71%; mp 115°C; 3P NMR (CDCk) 6 —3.5] (i.e., P-O(ap) 1.753, 1.765 A and-FC(aryl; eq) 1.818, 1.820
was obtained along witl8 (29%) after separation by TLC  A.
(hexane/CHCI 2:1; SiQy). X-ray structural analysis & and The observation at room temperature (rt) that tharyp
- for 3 (160 Hz) and4 (88 Hz)® are quite different while the
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A (Jl) FLgLNVéL gﬁez;ﬂ‘;?tﬁ?fgfﬁfﬁfﬁf' Em\.’véh'\gﬁf'rggdgéd“ldo“fngo’ indicates that the solution structures of these compounds are
7753. also trigonal bipyramids.
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Scheme 3Energy Diagram for Berry Pseudorotation 35
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enantiomerg-R and4-S, in which exchange between fluorines,
a-endoandb-endq anda-exoandb-exq occurs, respectively,
by a single-step pseudorotatidrwith the n-Bu group as the
pivot. Line shape analysis of th& NMR spectra (temperature
range of 223-243 K; T, = 235 K) of one of the pairs of signals
gave the activation parametesdd* = 10.0+ 0.2 kcal mot?
andAS = —3.4+ 1.0 eu.

Rates of pseudorotation dfto 3, an apparently irreversible
process, were measured by monitori#§ NMR in toluene
(temperature range of 36328 K) and were found to obey first-
order kinetics? The Eyring plot of the rates gave the activation
parameter\H* = 21.8+ 0.4 kcal mot! andASF = —9.0+
1.2 eu.

The pseudorotation between enantiom@&fR and 3-S was

3-R

Phosphoranes should be only slightly less stable th&n
and therefore the activation enthalpy obtained for pseudorotation
betweerb-exoand5-endoshould differ from that betweedR
and3-S by only a very small amount. Hence, it is reasonable
to use the values to evaluate the permutation proce3sldfus,
4is concluded to be less stable tHahy at least ca. 12=34—

22) kcal mot™.

The shortest series of Berry pseudorotation processes of
lowest energy for the inversion & is shown as Scheme 3.
The isomer of highest energy mustBevhich has an equatorial
five-membered ring, and the next highest musfbehich has
two equatorial oxygenk!

Theoretical calculations on RH and even cyclic oxyphos-
phorane® predict the activation energy of Berry pseudorotation

found to be too slow to measure by NMR techniques such asto be very low. Thus, the present results exemplify the

saturation transfer. Therefore, diastereonteexo[3P NMR
(CDCly) 6 —22.2;1%F NMR (CDChk) 6 —75.4 (m, 6F),—79.7
(s, 3F)] and5-endo [3P NMR (CDCE) 6 —22.7; 1% NMR
(CDCly) 6 —74.9 (q,%Jrs = 9.3 Hz, 3F),—75.4 (q,%Jrr = 9.3
Hz, 3F),—80.1 (s, 3F)], differing fronB only by having a CH
group in the place of one of the @groups (Scheme 3), were
synthesized by alkylation of their correspondingHP (equato-
rial) diastereomer$-exo [31P NMR (CDCk) 6 —49.4] and
6-endo [31P NMR (CDCk) 6 —47.8], which proceeded with
full retention of configuration at phosphorbfst® The pseu-

successful isolation of stereoisomers on the same Berry pseu-
dorotation coordinate utilizing the great ability of the so-called
Martin ligand to stabilize hypervalent molecules.
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